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Part I: Conceptual Narrative for a General Physics Audience

“Matter is made of atoms” becomes accepted wisdom

By the end of the 19" century the atomistic explanation of the
material universe had reached such a widespread acceptance
among physicists that Hilbert in 1900 at the International
Congress of Mathematicians proposed as his 6" problem to
lay the rigorous mathematical foundations of the macroscopic
continuum laws of physics in terms of the Newtonian dynamics
of a huge number of atoms.
(Obviously this is an open-ended project, not a clearly limited
problem like Hilbert’s problem 8a: The Riemann Hypothesis.)
In the 125 years hence mathematical physicists have made
impressive progress on Hilbert's 67 problem with hard-sphere
atoms by deriving the Maxwell-Boltzmann kinetic equation for
dilute gases, and from it the Navier—Stokes equations of fluids!
| next pave the ground for what we are after by formulating a
Modernized Newtonian Version of Hilbert’s 6! problem.
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Part I: Conceptual Narrative for a General Physics Audience

Modernized Newtonian Version of Hilbert’s 67 problem

Assume the matter in our world is made of N >> 1 charged,
massive point particles that belong to 91 different types,
having charges Ze with Z € {-1,1,2,--- ,43,--- ,61,--- ,92},
representing electrons and the “stable” nuclei with pertinent
typical masses. The particles move through three-dimensional
Euclidean space as time goes on, according to Newton’s laws
of motion with pairwise forces between particles given by:

e electrical Coulomb forces (o< £1/r2),
e gravitational Newton forces (x —1/r?),
. (o &7 /13).

Q: To which extent does this microscopic model account
reasonably accurately for material phenomena in our world?
Obviously this model will fail to capture many phenomena, but
the question is not how bad it is. The question is: How good?
It sets a reference standard to which one has to aspire to!
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Part I: Conceptual Narrative for a General Physics Audience

Modernized Newtonian Version of Hilbert’s 67 problem

A: First of all, mathematically the dynamical model is globally in
time well-posed as initial value problem! (As good as it can get!)
This reduces the modernized 6 problem to the following:

Q' If the initial data for the N particles are chosen to represent
the state of matter “today,” do the dynamical equations correctly
predict the state of matter “tomorrow”? NB: Matter is clustered!
A’: This model captures qualitatively, and to some extent also
quantitatively accurately the behavior of physical matter “as we
know it” for 2 < N < 10°°. Such as:

@ Electrons and nuclei bind to form atoms;
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Part I: Conceptual Narrative for a General Physics Audience

Modernized Newtonian Version of Hilbert’s 67 problem

A: First of all, mathematically the dynamical model is globally in
time well-posed as initial value problem! (As good as it can get!)
This reduces the modernized 6 problem to the following:

Q' If the initial data for the N particles are chosen to represent
the state of matter “today,” do the dynamical equations correctly
predict the state of matter “tomorrow”? NB: Matter is clustered!
A’: This model captures qualitatively, and to some extent also
quantitatively accurately the behavior of physical matter “as we
know it” for 2 < N < 10°°. Such as:

@ Electrons and nuclei bind to form atoms;

@ Atoms bind to form molecules, etc.

@ Celestial-size ground states exist and are a spherical;

@ Two such ground states carry out =~ Kepler motions;

@ Expected: kinetic equations of plasma; elastic solids; etc.
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Part I: Conceptual Narrative for a General Physics Audience

Quest for a Relativistic Version of Hilbert's 6" Problem:
The Einstein—Infeld—Hoffmann Legacy

In 1938, Einstein, Infeld, and Hoffmann published their brave
attempt at extracting the equations of motion of N uncharged
point particles from Einstein’s vacuum field equations for
spacetimes with singularities,

G"" = 0 away from singularities

Subsequently, Wallace, a student of Infeld, extended the EIH
work to charged point particles, attempting to obtain equations
of motion for the particles from the Einstein—-Maxwell system

G = 8ZE T away from singularities,

where TH” is the energy-momentum-stress tensor for the
Maxwell-Lorentz fields away from the point charges.
Unfortunately their papers exhibit VOODOO mathematics!
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Part I: Conceptual Narrative for a General Physics Audience

Quest for a Relativistic Version of Hilbert’s 6" Problem

TO TAKE OFF FROM THE GROUND ONE NEEDS:
A well-posed relativistically covariant joint initial value problem
for the motion of massive charged point particles and evolution
of the electromagnetic and gravitational fields they generate.

The Classical Radiation-Reaction Problem has stood in the way!
“When people realized there is a problem, quantum physics

was invented. Then everyone started doing quantum physics,
and the problem was forgotten. Yet, the problem still exists!”

=
X

(Detlef Durr, private communication, mid 1980s)
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Part I: Conceptual Narrative for a General Physics Audience

Outlook on what’s reported in the remainder of this talk

We report on a well-posed IVP of a special-relativistic classical
electrodynamics of N point charges in a BLTP vacuum that we
have established in joint work with Shadi Tahvildar-Zadeh.
Jointly with Holly Carley, Ryan McGuigan, and Lilit Sarsyan
we have begun the evaluation of BLTP electrodynamics for a
single point charge moving along a constant applied E field.
We have laid out the stepping stones for taking the Vlasov limit
of BLTP electrodynamics to get the Vlasov-MBLTP equations of
the kinetic theory of plasma, and its radiation-reaction corrected
generalization (joint with Yves Elskens). We are confident that
the Vlasov limit N — oo can be rigorously established for the
BLTP electrodynamics, and also the subsequent singular limit
» — oo to obtain the relativistic Vlasov-Maxwell system.
Jointly with Annegret Burtscher and Tahvildar-Zadeh we have
begun to generalize our work to the general-relativistic

setting. This is still in its baby phase.



Part I: Conceptual Narrative for a General Physics Audience

My Co-Author on Rigorous BLTP Electrodynamics

The special-relativistic joint Initial-Value Problem for the motion
of N point charges and the evolution of their electromagnetic
Maxwell fields in a BLTP vacuum is a joint work with

A. Shadi Tahvildar-Zadeh
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Part I: Conceptual Narrative for a General Physics Audience

My Co-Authors on BLTP motion in a capacitor E field

The straight motion of a point charge along a constant
capagcitor field to O(5<%) included is joint work with
Holly Carley
and to O(><*) included it is joint work with
Ryan McGuigan

Holly
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Part I: Conceptual Narrative for a General Physics Audience

My Co-Author on Relativistic Kinetic Plasma Theory

The road map for a derivation of special-relativistic kinetic plasma theory
from BLTP electrodynamics is joint work with

P

Yves Elskens
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Part I: Conceptual Narrative for a General Physics Audience

My Co-Authors on the EIH legacy

The general-relativistic Initial-Value Problem for a single point
charge at rest and its gravitational and electrical fields is joint
work with Shadi Tahvildar-Zadeh and Annegret Burtscher.

Michael K.-H. Kiessling



Part II: Technical Narrative for Mathematical Physicists

As for the details, ...

The classical radiation-reaction problem was encountered
before the advent of special-relativity theory, and therefore
before the advent of general-relativity theory. Thus, if we cannot
overcome it in a special-relativistic setting, we presumably
cannot overcome it in a general-relativistic setting either!

In the following we review the main attempts to establish a
mathematically consistent classical special-relativistic
electrodynamics with point charges and their electromagnetic
interactions, culminating with our own recent contributions.
Subsequently we address the general-relativistic analog, in
which also gravitational interactions enter. This has remained a
vastly open problem, but slowly progress is being made!
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

The special-relativistic equations of particle motion
@ Einstein—Lorentz—Poincaré

) 1
() = i M A0
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@ Newton’s law for the rate of change of momentum

Px(t) = Tk (1)
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

The special-relativistic equations of particle motion
@ Einstein—Lorentz—Poincaré

) 1
() = i M A0

@ Newton’s law for the rate of change of momentum

Px(t) = Tk (1)

@ Lorentz’ law for the electromagnetic force

£ () = ex [E(t, k(1)) + 1ak(t)xB(t, qk(1))]
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

The special-relativistic Maxwell-Lorentz field equations:
@ The evolution equations:

0;B(t,s) = —cV xE(t,s)
0, E(t,8) = +CVXB(t,8) — 41 Y exdq,(1)(S)Ak(1),
K
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

The special-relativistic Maxwell-Lorentz field equations:
@ The evolution equations:

0;B(t,s) = —cV xE(t,s)
0, E(t,8) = +CVXB(t,8) — 41 Y exdq,(1)(S)Ak(1),
K

@ The

V-B(t,s)=0
V- E(t,s) = 4r ; kg (t)(S)

@ N.B.: Constraint equations restrict only field initial data.
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

@ Symbolically the equations of Lorentz Electrodynamics
seem to pose a joint Cauchy problem for positions q(¢)
and momenta pk(t), and for the fields B(t,s) and E(t, s),
with initial data constrained by the divergence equations for
the fields, and by the speed limit |q4(0)| < c.
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Part II: Technical Narrative for Mathematical Physicists

The failed proto-type: Lorentz electrodynamics

@ Symbolically the equations of Lorentz Electrodynamics
seem to pose a joint Cauchy problem for positions q(¢)
and momenta pk(t), and for the fields B(t,s) and E(t, s),
with initial data constrained by the divergence equations for
the fields, and by the speed limit |q4(0)| < c.

° E(t,qx(t)) & B(t,qx(t)) “infinite in all directions”

o f(t) can be “defined” through averaging (very popular!),
but result depends on how the averaging is done.

@ Deckert and Hartenstein: Typically, field singularities will
propagate along forward light cones of initial positions.

@ Also, fields diverge strongly at particle world lines!
— No meaningful energy-momentum conservation law!

@ UPSHOT: Lorentz Electrodynamics with point charges
is not well-definable!
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Part II: Technical Narrative for Mathematical Physicists

Schwarzschild—Synge / Fokker—Tetrode ?

Radical proposal:

In 1903, Karl Schwarzschild proposed a law of motion using
the of a moving point charge on another,
computed with the Liénard—Wiechert “elementary fields.” After
the advent of Relativity Theory, only the kinetic term in
Schwarzschild’s action principle needed to be changed to
account for the relativistic relationship between mechanical
momentum and velocity to yield a special-relativistic model,
studied in 1940 by John Synge.

A more radical variation on this theme was proposed by Hugo
M. Tetrode (1922) and Adrien D. Fokker (1929) who used

— None of these models poses an IVP!
— None of these models obeys “actio = reactio

Michael K.-H. Kiessling
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Part II: Technical Narrative for Mathematical Physicists

Wheeler—Feynman ?

In the late 1940s, Richard P. Feynman and John A. Wheeler
picked up on this theme, but imposed a SELECTION RULE:
ABSORBER PRINCIPLE replaces all contributions from the
future by those of the past, plus a third-order time derivative of
the positions at the current time.

— Again NOT an IVP!

— Still no “actio = reactio”!
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Part II: Technical Narrative for Mathematical Physicists

Rigorous Results for the S-S, F-T, and W-F Models

G. Bauer, “Ein Existenzsatz fur die WF-Elektrodynamik”
(1997).

G. Bauer, D.-A. Deckert, D. Durr, “On the existence of
dynamics in Wheeler—Feynman electromagnetism,” ZAMP,
1-38, (2013).

G. Bauer, D.-A. Deckert, D. Diirr, G. Hinrichs, “On
irreversibility and radiation in classical electrodynamics of point
particles,” J. Statist. Phys. 154:610-622 (2014).

D.-A. Deckert and N. Vona, “Delay equations of the
Wheeler-Feynman type,” J. Math. Sci. 202:623—-636 (2014).

G. Bauer, D.-A. Deckert, D. Diirr, G. Hinrichs: “Global
solutions to the electrodynamic two-body problem on a straight
line,” ZAMP 68 (2017).

(N.B. Most results are for the FT model)



Part II: Technical Narrative for Mathematical Physicists

Gustav Mie’s legacy: Generalized EM Vacuum Laws

Meantime, at the IVP front ...
1912/1913: Gustav Mie inaugurates nonlinear classical electromagnetic
field theory < Introducing non-Maxwellian “laws of the pure ether.”

N.B.: Mie purges point charges from the theory; seeks “field solitons”
Mie’s program was picked up by Max Born, David Hilbert, Hermann Weyl

In 1933 Max Born puts the point charges back in. His insight:

In 1934 Leo Infeld joins Born in his project.

In 1940 Fritz Bopp replaces the nonlinear Born-Infeld model
by a linear higher order derivative model.
In 1941 the same linear model is proposed by Alfred Landé;
subsequently collaboration on it with Llewellyn Thomas.
Subsequently Boris Podolsky picks up on the work of Landé-Thomas.

Michael K.-H. Kiessling



Part II: Technical Narrative for Mathematical Physicists

Pre-metric Maxwell-Lorentz equations (for free!)

@ Minkowski spacetime with Lorentz frame (¢, s), where
s € R3 is a space vector and t € R an instant of time.
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Part II: Technical Narrative for Mathematical Physicists

Pre-metric Maxwell-Lorentz equations (for free!)

@ Minkowski spacetime with Lorentz frame (¢, s), where
s € R3 is a space vector and t € R an instant of time.
@ N timelike world-lines of moving charged point particles
(NB: timelike < |qx(t)| < c).
@ Poincaré’s lemma now implies the existence of fields
D, H, B, E satisfying:
@ The evolution equations
0;B(t,s) = —cVxE(t,s)
0;D(t,8) = +CVxH(t,8) — 47 4 €xgy(r)(8)k(1)

e The (restrict only the field initial data)
V- -B(t,s)=0
V -D(t,8) = 47 Y5 €kdqu(n)(S)
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Part II: Technical Narrative for Mathematical Physicists

Electromagnetic Vacuum Law needs to be supplied!

A map (B,D) — (H, E) defines the electromagnetic vacuum!
@ Maxwell-Lorentz law
H=B & E=D
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Part II: Technical Narrative for Mathematical Physicists

Electromagnetic Vacuum Law needs to be supplied!

A map (B,D) — (H, E) defines the electromagnetic vacuum!
@ Maxwell-Lorentz law
H=B & E=D

° Born—lnfeld law B_ le(DXB)

1+ £(BR+ DP) + {[BXDP?
D—#BX(BXD)
\/1+ (B2 +|DP) + £[BxDJ?

E=
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@ Maxwell-Lorentz law
H=B & E=D

° Born—lnfeld law B_ le(DXB)

/15 (BR + IDP) + BxDP
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Part II: Technical Narrative for Mathematical Physicists

Electromagnetic Vacuum Law needs to be supplied!

A map (B,D) — (H, E) defines the electromagnetic vacuum!
@ Maxwell-Lorentz law
H=B & E=D

° Born—lnfeld law B_ le(DXB)

/15 (BR + IDP) + BxDP
D — #Bx(BxD)
\/1+ (B2 +|DP) + £[BxDJ?
@ Bopp-Landé-Thomas—Podolsky law (N.B.: O := é(‘)? —A)
H(t,s) = (1 + %_ZD) B(t,s)
D(t,s) = (1 + %*25) E(t,s).

@ NB: Bl - ML as b — oo; BLTP — ML as » — oo

E=




Part II: Technical Narrative for Mathematical Physicists

The total Lorentz force is still ill-defined

Neither Born—Infeld nor Bopp, or Landé—Thomas, or Podolsky
seem to have realized that the fields B(t,s) and E(t,s)
generated by a moving point charge are still undefined at the
location q(t) of the point charge.

Even though the Maxwell fields B(t,s) and E(t,s) in a Bl or a
BLTP vacuum are believed not to blow up in magnitude (for
MBLTP fields that has been proven), the limit of these fields as
s — q(t) does not exist, and so the field singularities cannot be
removed. Again, averaging over the neighborhood can produce
any vector that interpolates between the extreme possibilities.

The Lorentz “self”-force remains not well-definable!

Michael K.-H. Kiessling



Part II: Technical Narrative for Mathematical Physicists

Poincaré’s definition of the EM force

Poincaré’s electromagnetic force when only a single charge is present:

f(t) = _gt/ n(t,s)d’.
RS
where I is the momentum density of the electromagnetic field.

NB: Poincaré died before the Born—Infeld and Bopp proposals
appeared. He used the Maxwell-Lorentz field equations and
replaced point charges by smeared-out charges (similar to
Abraham or Lorentz) and later postulated Poincaré stresses to
keep the particle structure stable.

Poincaré’s definition of the electromagnetic force can be utilized
for point charges in the Bopp—Landé—Thomas—Podolsky
electromagnetic vacuum, and presumably also in the
Born—Infeld vacuum.

Michael K.-H. Kiessling



Part II: Technical Narrative for Mathematical Physicists

Electromagnetic Field Momenta

ML, MBI, and MBLTP field momentum densities IM:
@ For ML and for MBI field equations

47N =DxB
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Electromagnetic Field Momenta

ML, MBI, and MBLTP field momentum densities IM:
@ For ML and for MBI field equations

47N =DxB
@ For MBLTP field equations

47N =DXB +ExH - ExB — 572(V-E)(VxB — xE)
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Part II: Technical Narrative for Mathematical Physicists

Electromagnetic Field Momenta

ML, MBI, and MBLTP field momentum densities IM:
@ For ML and for MBI field equations

47N =DxB
@ For MBLTP field equations
47N =DXB +ExH - ExB — 572(V-E)(VxB — xE)

e MN(t,s)is L} ,(R®) about each q(t) for MBLTP fields (KTZ).

(Expected for MBI fields, but surely FALSE for ML fields!)
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Part II: Technical Narrative for Mathematical Physicists

BLTP Electrodynamics with a single point charge

Momentum Conservation — Equation of Motion (1 pt charge)

4R() =~ [ Mit.s)ols ()
@ With BLTP law: The fields B, D, E, E (and H) at (t,s)
depend on q(-), p(+), while D & H depend also on a(-)

(linearly), and then (x) is equivalent to a linear Volterra
integral equation of the second kind for a = a|q, p]

Michael K.-H. Kiessling
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BLTP Electrodynamics with a single point charge

Momentum Conservation — Equation of Motion (1 pt charge)
4R() =~ [ Mit.s)ols ()

@ With BLTP law: The fields B, D, E, E (and H) at (t,s)
depend on q(-), p(+), while D & H depend also on a(-)
(linearly), and then (x) is equivalent to a linear Volterra
integral equation of the second kind for a = a|q, p]

@ Integration over time leads to the fixed point equations

S — (Dd
V T+ mgc2

p(f) = p(0) - /RB (A(t,s) — N(0,s)) d’s=: P(q(-),p("))

t
q(t) = q(0) +f1”/o t = Q(a()p())
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depend on q(-), p(+), while D & H depend also on a(-)
(linearly), and then (x) is equivalent to a linear Volterra
integral equation of the second kind for a = a|q, p]

@ Integration over time leads to the fixed point equations

S — (Dd
V T+ mgc2

p(f) = p(0) - /RB (A(t,s) — N(0,s)) d’s=: P(q(-),p("))

t
q(t) = q(0) +f1”/o t = Q(a()p())

@ Well-posedness if (Qs, Ps)( -, -) is a Lipschitz Map.
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The key proposition (for a single point charge)

Proposition (KTZ) Given C%' maps t — q(t) and t — p(t),
with Lip(q) = v, Lip(v) = a, and |v(t)| < v < c, the Volterra
equation as a fixed point map has a unique C° solution
t—a(t)=«afq(-),p(-)](t). Moreover, the solution depends
Lipschitz continuously on the maps t — q(t) and t — p(t).

The proof takes several dozen pages of careful estimates, but
at the end of the day it all pans out! The well-posedness result
for the joint initial value problem of MBLTP fields and their point
charge sources is a corollary of the above Proposition.

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

a=W[p]- (F*[a,v] + F*~[q,p:a]

where
o 1 pep
WI{p] := sign (m) JrEE T E [I = |p|2]
and

f=[a,v(t) = e [E™(t.q(t)) + zv(1) xB*(t,q(1))]
with

and

d
fsource[q7 p; a](t) — _(Tt ; I-Isource(t7 S)dss

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

fuee[q, v; a] is the “self” force in BLTP electrodynamics

d rce
fsource[q’v; a](t) — _a . ey (t,S)dSS

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

fuee[q, v; a] is the “self” force in BLTP electrodynamics

flavial(t) = - Rsl‘l(t,s)d3s + = DROPPED
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The Volterra equation for the BLTP acceleration

feuee[q, v; a] is the “self” force in BLTP electrodynamics

d
fla,v;a](t) = _dt/Ra n(ts)d%
__d (N(t,s) - N(0,s — qo — Wt)) d°s
dt Bct(qo)

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

feuee[q, v; a] is the “self” force in BLTP electrodynamics

flq, v: a(t) = —;‘t/ﬂ@ n(t,s)ds

= (M(t,s) — N(0,s — qo — Vot)) d°s
dt Bet(a0)

= f[ zZ (1,0 + 22t

N k)/o [Z[k](t ) z[gko](lr,lrr)](t—tf)1—kdfr

0<k<

-5zl () |- tr)z‘kdtr]

<k<
where £(t) = (q,v,a)(t), and £°(t) = (qo + Vot, Vo, 0), and ...

\
o
>
o
h
|—|h’.
Q|
<
N
Py
~
~
+
SN—
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The Volterra equation for the BLTP acceleration

zH (1, 1) =

27 pm
/ / (1 — |v(t)| cos¥) me? (£, q(t) + c(t — t)n) sin Vdvdyp
0 0

with
sin ¥ cos ¢

n= | sindsingp
cos

and where, with |  meaning that q(t), v(t), a(t) are evaluated
att = ti(t,s), we have ...

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

[O](t,s) 41 _(n(q,s)—v)x(vxr;(q,s))
4 i (1—v~n(q,s)) et

21 [ n@s)-v ges) , ,
T _W}m X v(t)xKe(t', t,s)dt

1 -~ tret(t,s)
— A 7”"(“'75))} X / £ Ke(t, t,5)dt!
ret

v
2| v-n(q,s e

te(t.s) i (t,s)
iy / Ke(t', 1, 8)dt' / V(£)xKe(t, 1, 8)dt

—0o0 —00

te(t,8) e (t,s)
—%4/ Ke(t, t,s)dt’/ Ke(t, t,s)v(t)dt

—0o0 —0o0

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

wE](t,s):—%z n(q, s) M@)X[(n(@s)-v)xa)v | g ) (n(q,S)*V)an
(17v-n(q,s)) 2(17v-n(q,s)) ret

o (n(q s)—v)xa t?‘(t,s)
—»° |n(q,8) X~ —"—2"% x/ v(t)xKe(t', t, s)dt
(1—v-n(q,s)) S

2 i (n(q,s)—v)xa f(ts) / /
52 [ n(a,8)x | n(q, 8)x POSX N[5 TR (1, s)at
(1-vn@s)) 1] /oo

N tret(t s)
o [aban), [ Kelt t9) [ (E9) + v(E)] of

Michael K.-H. Kiessling
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The Volterra equation for the BLTP acceleration

Bl oy 521y [ _ |y (r@s)—v)x(vxn(as))
Te (t,s) ” [(1_V_n(q’s))zV [ ‘V‘] (1_V_n(qu))4 N

~ = (t.)
[1 - |v|2} n(q,s)xm] x/ Ke(t, t,s)dt
’ ret %

2 (@)= e v(t)xKe(t, t,s)dt,
— Vi|————s X X S
o i s} /Oo V() xKe(t' t.9)
with the abbreviations

(/=0 =Is=a(t)P)
(-7 ~[s—q(t")?

S/ (t=t P—Is—a(t) 2

Kg(t/, t,S) = 2( (t—t’)z—\S—q(i’)|2 ) (S - q(t,) - V(t,)(t - t,)) ‘

Michael K.-H. Kiessling

Ke(t',t,8) =

I
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Thm: BLTP Electrodynamics is well-posed VN (KTZ)

using hyperbolicity of the field equations. We have proved that
@ The Cauchy problem for MBLTP fields +
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Thm: BLTP Electrodynamics is well-posed VN (KTZ)

using hyperbolicity of the field equations. We have proved that
@ The Cauchy problem for MBLTP fields +
e is locally well-posed for admissible initial data & m # 0;
o is globally well-posed if in a finite time:
(a) no particle reaches the speed of light,
(b) no particle reaches infinite acceleration,
(€) no two particles reach the same location;
e obeys Energy-Momentum conservation rigorously;
e rigorously furnishes a
@ VIBLTP field theory features the foIIowmg oddities:
(a) longitudinal electrical waves;
(b) subluminal transversal electromagnetic wave modes;
(c) energy functional unbounded below;
(d) The MBLTP fields B, D, E, E require initial data.
N.B.: (B,D)o — (E, E), feasible! (max. field energy)

Michael K.-H. Kiessling
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Publications on rigorous BLTP electrodynamics

The proof of local well-posedness for the joint initial value
problem will appear in:

M.K.-H.K. and A.S. Tahvildar-Zadeh, “BLTP Electrodynamics as
Initial Value Problem,” > 100pgs. (still in preparation, 2026)

A summary did appear in:

M.K.-H.K., “Force on a point charge source of the classical
electromagnetic field,” Phys. Rev. D 100, 065012 (2019);
“Erratum,” ibid. 101, 109901 (E) (2020).

The global well-posedness of the scattering problem of a single
point charge in BLTP electrodynamics (for a fixed external,
compactly supported potential) is shown in:

Vu Hoang, Maria Radosz, Angel Harb, Aaron DelLeon, and Alan
Baza, “Radiation reaction in higher-order electrodynamics,” J.
Math. Phys. 62, 072901 (2021).

Michael K.-H. Kiessling
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BLTP motion along a constant electric capacitor field

In this setting the Abraham—Lorentz—Dirac; Landau-Lifshitz;
Eliezer models yield vanishing radiation-reaction.

In BLTP electrodynamics, radiation-reaction does not vanish.

Expansion in powers of s up to 3rd order included needed to
see a non-vanishing radiation-reaction term:

H.K. Carley and M.K.-H.K., in “Physics and the Nature of
Reality: Essays in Memory of Detlef Dirr,” A. Bassi et al.
(Eds.), Springer (2024).

Motion with radiation-reaction force expaned in powers of s up
to 4th order included carried out jointly with Ryan McGuigan;
publication to appear in Int. J. Mod. Phys. A (2026)

But one really needs to study the large-s< regime, and that is
non-perturbative. (On the to-do list!)

Michael K.-H. Kiessling
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BLTP motion along a constant electric capacitor field

The O(»?) contribution to the self-force has been computed to
be

FA ) = o.

In this problem of straight line motion in a constant external
electric field, with the particle starting from rest, the BLTP
radiation-reaction force vanishes identically at O(>?).

The O(»><%) contribution to the radiation-reaction force for small

» has been computed in to be
Sy = —f% e’q(t).

The O(s*) contribution to the radiation-reaction force for small
» reads

t
FW() = 1%492/ q(t")cdt”.
0

Michael K.-H. Kiessling
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BLTP motion along a constant electric capacitor field

NUMERICAL RESULTS v vs.t FOR THE SMALL s REGIME.
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From McGuigan and Kiessling, to appear 2026.

Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem

The Vlasov-Maxwell(-Maxwell) equations are symbolically a
singular limit > — oo of the Vlasov-Maxwell-BLTP equations

Vo: Oify+VeVsly+ € (E+ 1vyxB) -V,f, =0,
Vo(p) = cp/y/m2c2 + |p|2.

0;B(t,s) + cVsxE(t,s) = 0,
Vs-B(t,s) = 0,
_9,D(t,8) + cVsxH(L,S) = 475" Nye, /R (5 P)Vo(P)p.
Vs:D(t,8) = 475 N, e, /RS f,(t,s,p)dp,

D(t,s) = (1 +» 20)E(t,s) & H(t,s)=(1+ » 20)B(1s).
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Special-Relativistic Version of Hilbert’s 6 Problem

In “Microscopic foundations of kinetic plasma theory: The
relativistic Vlasov—Maxwell equations and their
radiation-reaction-corrected generalization,”

J. Statist. Phys. 180, 749-772 (2020),

Y. Elskens and M.K.-H.K. show that in principle the
Vlasov-Maxwell-BLTP system should be obtainable as a limit
N, — oc of BLTP electrodynamics on suitably short time scales.
Through a subsequent singular limit > — oo one should be
able to obtain the relativistic Vlasov—Maxwell equations that are
generally considered to capture relativistic astrophysical
plasma phenomena.

Strategy is not via BBGKY hierarchy, but using empirical 1 and
2 point measures. N.B.: Our strategy is inspired by
non-relativistic works of Neunzert (1974) and Dobrushin
(1979) who work with regularized Newtonian pair

interactions and need only empirical 1 point measures.
Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem

The normalized empirical one-point measure on R® of species
o reads,

At s p) e 1
Ap(ts,p) : Z_: a7 (0 (8)dpz(n(P) ;

and the normalized empirical two-point measure on R® x R®
reads

AN)(:5.9,1.8,8) = (=17 2 3 da7((8)0p7 0 (P 1) (8)pg iy (B)

1<j#k<No

For each o these two empirical measures jointly satisfy a
distributional identity, shown next.

Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem
O LN (1,5.P) + V,(P)-0s4, (1, 5.P)
+ e, (Eo(t,s) + 1v,(p)xBo(t,s)) -V A“)(t s p)
te, Y [E(Nﬁ>(t,s)+ v, (p)xBM(t, s)} Vo2 (ts,p)

T#0
2 2 1 —Vs/C 1 Voxn(§,s)/c
+e%87r b —1) //1 nss VJ/C+EVUX1 n(ss)vg/c} VP
22(t,s,p. t7(t,8), 8, p)d>pd®s
tret ts)
— &2 (N, /// (1.1,8) + Vo x (Vo X Kg g, (t,t,s))}-vp

20(t,s,p,1,8,p)d°pdsdt

N, ) . R )
= 2 [ (.9) - 50, - 7 0) &3]y (P (5)-
ot (A7

Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem

Here, n(s,s) := ﬁ for § # s, and where “|,,” means
(q,v,a) = (q, v,a)(t") with t'(¢, s) < t defined implicitly by
c(t — ) = |s — q(t")[, with q(t) continuously extended by
straight line motion to t < 0. The integral kernels are

-  d(/R(t-T)2—|s—82) (s—&—(t-Hi), (@

K§,\"/(t7 t, S) T c2(t—1)2—|s—§|2

Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem
For each 7 the MBLTP fields E"s)(t, s) and B"#)(¢, s) read

EM(t,5) =N, 6,5 - / / nESv /e At 5) & B)d*pa%s

1-n(8,s)-V./c

trel t S

~ N.e,s2 / / / oKy y (1.1,5) A (.8, p)a®padsd,

3)
BY)(t,8) =N, &, 524 / / TexnEs)/e () (i1 5) & B)d°HdE

1—n(8,s)-v,/c=

trel t S

Noe Pt ///vTxKgp (:.t,9)A40 (1.8, p)d3pd°adt,

(4)
while Ey(t,s) and By(t,s) are vacuum MBLTP fields.



Part II: Technical Narrative for Mathematical Physicists

Special-Relativistic Version of Hilbert’s 6 Problem

Lastly, the term at r.h.s. is the radiation reaction averaged over
all particles of species o; we have spelled out this term in
(ElsKie2020) and here simply abbreviate it as R [égg] (t,s.p).
In a nutshell, kinetic theory operates under the assumption that
the fine details of the one- and two-particle distributions don’t
matter for the answers to the questions one has, in the sense
that for the practical purpose at hand the microscopically
accurate empirical one-point density A( ) can be replaced by a
smoother, in particular continuous denS|ty function £,(t, s, p).

Michael K.-H. Kiessling
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Special-Relativistic Version of Hilbert’s 6 Problem

Mathematically more precisely, one assumes that

distKR(ég\B — f,) < ein a suitable Kantorovich-Rubinstein
distance, with ¢ as small as dictated by the error one is willing
to tolerate. For sufficiently regular interactions, the empirical
two-point density éﬁj(t, s,p, 1,8, p) can then be replaced with
a continuous product density function ,(t, s, p)f,(t, 8, p), with
compatible small error.

In BLTP electrodynamics the interaction is represented by the
Green function kernels Ks y_(i, t,s), which are sufficiently
regular. The “kinetic approximation” thus results in the following
system of transport equations for the £,(t,s,p):

[at + v, (p)-0s + €5 (E(t,8) + 1v,(p)xB(t,S)) -vp} £,(t,s,p) =

ern- (E7(1,8) + 1v,(p)xB7(1,8)) -Vph(t,s,p) + R[f] (1,8,P),
Vlasov-MBLTP results when r.h.s. is negligible!

Michael K.-H. Kiessling
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The Einstein—Infeld—Hoffmann Legacy (cont.?)

On a smooth Lorentz manifold equipped with three times
continuously differentiable metric, the twice contracted second
Bianchi identity reads

v,.G" =0".
If that spacetime is a solution to Einstein’s field equations,
G — 53(7%46‘7'#1/’
then the second Bianchi identity implies the conservation laws
vV, T =0

for the energy and momentum densities of the “matter” fields.

Q: Is there a distributional version of the second
Bianchi identity for spacetimes with timelike singularities?

Michael K.-H. Kiessling
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A modest rigorous beginning ...

A. Burtscher, A.S. Tahvildar-Zadeh, and myself, in

“Weak second Bianchi identity for static, spherically symmetric
spacetimes with timelike singularities,”

Class. Quantum Grav. 38 185001, 31pp. (2021)

established what the title of our paper says, for charged timelike
singularities in a class of electromagnetic vacua that includes
the Born—Infeld vacuum, but NOT the BLTP vacuum.

Obviously, this is only a first baby step !

Michael K.-H. Kiessling
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MANY THANKS TO THE AUDIENCE FOR LISTENING!

MANY THANKS TO THE ORGANIZERS:
Angelo Bassi (Trieste)

Dirk - André Deckert (Munich)
Paula Reichert-Schirmer (Munich)
Ward Struyve (Leuven)

Fabian Nolte (Munich)

Michael K.-H. Kiessling
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Abraham and Lorentz: jq(s(S) — ﬁwa(q(,))(s)

if one insists on the Maxwell-Lorentz field equations,

Replacing the point particle by a rigidly moving and spinning

ball yields the Abraham model; insisting the spherical shape

holds only in the particle’s rest frame yields “the” Lorentz model.
RIGOROUS RESULTS for the ABRAHAM MODEL

G. Bauer and D. Darr, “The Maxwell-Lorentz system of a rigid

charge,” Ann. Inst. H. Poincaré 2, 179—-196 (2001).

A.l. Komech and H. Spohn, “Long-time asymptotics for the

coupled Maxwell-Lorentz Equations,” Commun. PDE 25,

559-584 (2000).

M. Kunze and H. Spohn, “Adiabatic limit of the coupled

Maxwell-Lorentz Equations,” Ann. Inst. H. Poincaré 1,

625653 (2000). (and many more follow-up publications)

Michael K.-H. Kiessling
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ML and MBI and MBLTP Electromagnetic Field Theory

Rigorous Results on the Field Cauchy Problems

@ ML field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.
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ML and MBI and MBLTP Electromagnetic Field Theory

Rigorous Results on the Field Cauchy Problems

@ ML field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.

@ MBLTP field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.

e MBI field Cauchy problem:

o Global well-posedness (classical) with small data (no
charges!) (J. Speck; F. Pasqualotto)

o Finite-time blow up with certain plane wave data (no
charges!) (Y. Brenier; cf. D. Serre)

e Existence and Uniqueness of static finite-energy solutions
with N ; real analyticity away from point
charges (M.K.; cf. Bonheure et al.)

Michael K.-H. Kiessling
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