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—

“It seems clear that the present quantum mechanics is not in its final
form.” (Paul Adrien Maurice Dirac)

Summary: This talk is about the foundations of quantum theory, a
thorny subject haunted by controversy and confusion, not to make more
critical comments. I will start by trying to describe some of the key
problems and facts encountered in the foundations of QM.

Main purpose of talk: Survey of results of our search for a plausible
Completion of Quantum Mechanics.



Summary - ctd.

“The constant element in physics, since Newton, is not a configuration or
a geometrical form, but a Law of Dynamics.” (Werner Heisenberg)

I will focus on the derivation of a general non-linear, stochastic Law
of Dynamics for non-relativistic Quantum Mechanics (QM) from basic
principles (superseding Schrödinger evolution) and on some of the recent
applications of this novel law.

Concretely: I will apply our general results to problems in quantum
optics: The quantum-mechanical time evolution of physical systems
consisting of charged matter interacting with the quantized electro-
magnetic field will be shown to be non-linear, dissipative and stochastic,
featuring isolated random events sometimes called “quantum jumps”.

Explicit results are presented for an idealized description of such systems
arising in a limiting non-relativistic regime where the velocity of light, c ,
tends to ∞. These equations involve a type of stochastic process, which
I call “Quantum Poisson Jump Process”. I will introduce this process,
present some of its mathematical properties and sketch applications to
the theory of fluorescence of atoms.



1. General Introduction to Problems of QM
I take it for granted that the audience is somewhat familiar with text-
book QM: Let S be a physical system to be described by QM; then

I Pure states of S = unit rays in a Hilbert space, H,
mixed states = density matrices acting on H.

I Physical quantities characteristic of S are represented by
certain selfadjoint operators acting on H.

I Time evolution of states of S is described by a Schrödinger-
von Neumann equation – except when a physical quantity
of S is measured (!).

I Effect of a measurement of a physical quantity on the state of S is
described by von Neumann-Lüders postulates : Transition to mixed
state, followed by state-reduction / collapse + Born’s Rule.

The Schrödinger-von Neumann equation for the evolution of states is
linear and deterministic. The only information it contains concerns
spectral properties of the Hamiltonian, HS , generating time evol. – which
is not much! Yet, experiments tell us that QM is fundamentally
probabilistic. → “Measurement Problem.”



Shortcomings of text-book QM, basic claims
This problem has motivated the von Neumann-Lüders postulates, which,
however, cover up a lack of theory-intrinsic understanding of measure-
ments as physical processes and lead to serious difficulties:
For example, it is posited that, independently of the state in which S has
been prepared, measurements of arbitrary physical quantities of S can be
carried out at arbitrary times and arbitrary quickly – which would lead to
infinitely large energy fluctuations (!) – and without including the
measurement equipment in the quantum-mechanical description. →
Fundamental role of “observers.” – All this strikes me as quite absurd!

These defects of text-book QM are ± well known; but how to cure them
remains very controversial → problem of “interpretations of QM”:
different versions of Copenhagen, Everett, relational QM, Qbism, ... ,
Bohmian mechanics. – I will sketch the “ETH-Approach” for you.

To begin with, the following claims will be substantiated on examples:

I. QM is intrinsically probabilistic. – Root: EM field.

II. Time evolution of individual systems not described by Schrödinger-
von Neumann equation → must search for Law of Dynamics in
QM: Non-linear stochastic dynamics – Sect. 2, and Part II, Sect. 5.



Our tasks in attempting to complete QM
“Every experiment destroys some of the knowledge of the system which
was obtained by previous experiments.” (Werner Heisenberg)

III. To find a general Law of Dynamics in QM, we must introduce:

(i) appropriate notions of “potentialities” (“potential events”)
and of “actualities” (“(actual) events / facts”);

(ii) a dichotomy between past and future (Aristotle) → “arrow of
time”; and a fundamental mechanism of dissipation (EM field);

(iii) an appropriate notion of “states”.

Remarks: Since, as Heisenberg intuited, the time evolution of states in
QM distinguishes between past and future, the Aristotelian dichotomy
between “past” (which consists of actualities, i.e., is factual) and
“future” (which consists of potentialities) – separated by the
“present”, in which certain (which?) potentialities actualize –
must be properly incorporated into QM.

Physics is primarily a science enabling one to make predictions concerning
the future. States should serve to make such predictions. Thus, states
should be viewed as mathematical devices enabling one to make predic-
tions about the likelihood of future potentialities to actualize.



QM is intrinsically probabilistic – item 1.

Much of the confusion still prevailing in QM is due to a lack of taking
item III. (i) - (iii) properly into account.

I. The probabilistic nature of QM. Fact: In general one can only predict
probabilities of different outcomes of experiments / measurements.

Example: Stern-Gerlach experiment with silver atoms (spin 1/2)

Schödinger evolution
or upper detector fires

true evolution

Only probabilities of the event that the upper / lower detector is firing
are predicted by QM; and this has to be a basic feature of a fundamental
law of dynamics.



Schrödinger equation does not describe propagation of
states of individual systems – item II

II. Prepare a pair of silver atoms in an entangled spin-singlet state and
orbital wave fus. such that one atom propagates to the left while the
other atom propagates to the right. Then the Schrödinger equation
predicts behavior 1. (below), while all experiments reveal events as in 2.
(or 2., with upper and lower detectors interchanged on the left and on
the right), exhibiting correlations between left and right:



“Non-locality” of QM versus “Einstein causality”

If the Schrödinger equation described the evolution of states of individual
systems then spin measurements on the left would not bias the outcome
of spin measurements on right → item II ! That there is such a bias is
interpreted as “non-locality” of QM.
This analysis has been presented in Faupin-F-Schubnel (2015).

Another Gedanken-Experiment leading to the conclusions in item II is
Wigner’s friend paradox; see Wigner, Hardy, Frauchiger-Renner (2018)...

“Non-locality” of QM and Einstein causality (↗ RQFT): Measurements
of components of spins of silver atoms can be made in space-like
separated regions of space-time. Then the order in which these two
measurements occur depends on the rest frame of the observer who
records measurement data. For predictions of measurement data of
different observers to be compatible the operators representing the results
of these measurements must commute, as assumed in RQFT!

The “non-locality of QM” is often mis-represented, and the talk about a
tension between QM and Relativity Theory is misguided.



The importance of a clear notion of “events” – item III. (i)

In the upper situation, the question whether the particle went through
the u-slit or through the d-slit before hitting the screen is meaningless;
for, it is a question that does not concern an “event” that can ever
happen. In QM, the picture of a particle being point-like and always
having a precise position is wrong ! – The lower picture is about a
measurement, to the right of the double slit, of the approximate position
of the particle by light scattering → interference pattern disappears.



Dichotomy between past and future and the notion of
states – item III. (ii) & (iii)

Past = History of Events (facts) / Future = Ensemble of potentialities

This dichotomy must be repr. in QM → fundamental arrow of time!

The past is factual. – The role of states is to serve to predict the
likelihood of potential events (potentialities) actualizing in the future.



2. Sketch of the ETH-Approach to QM
In QM, the time evolution of “ensemble states”, i.e., of averages of
states taken over a large ensemble of identical, identically prepared
systems, is usually taken to be linear and deterministic (Schrödinger-von
Neumann –, or Lindblad-type evolution). However, the quantum-
mechanical time evolution of the state of an individual system is
non-linear and stochastic.

A conceptual explanation of this fundamental fact is the core of the
“ETH-Approach to QM”, a special case of which appropriate for a
precise formulation of non-relativistic QM will be sketched presently.
It is based on the following four ingredients:

A. Physical quantities of a system, S , are represented by abstract,
selfadjoint linear ops. X̂ , Ŷ , . . . belonging to a family, OS .
At every time t, all the elements of OS are represented by concrete
operators, OS 3 X̂ 7→ X (t) = X (t)∗ ∈ B(H), acting on a Hilbert
space H. The t-dependence of the operators X (t) is given by the
well known Heisenberg equations: Ẋ (t) = i

[
HS ,X (t)

]
, (h̄ = 1).

B. Algebras of “potential events” are defined as

E≥t :=
〈
X (t ′)

∣∣X (t ′) rep. a phys. quantity X̂ ∈ OS , t
′ ≥ t

〉−
, (1)



Ingredients of the ETH-Approach to QM

It follows immediately from the definition that

E≥t ′ ⊆ E≥t , whenever t ′ > t ,

and the Heisenberg equations imply that

E≥t ′ = e i(t ′−t)HS E≥t e
i(t−t ′)HS , for arbitrary t, t ′,

where HS is the Hamiltonian of S (assumed autonomous); i.e.,

E≥t ' E≥0, ∀t.

C. Potential events (potentialities), e, in QM possibly happening at
some time ≥ t are given by partitions of unity by disjoint orthogonal
projections in the algebra E≥t

e =
{
πξ
∣∣ ξ ∈ X

}
⊂ E≥t , X an index set.

D. States of a system ' S at time t are defined to be normalized,
positive, linear functionals on the algebra E≥t .

If and only if E≥t is independent of t (as for closed systems and
relativistic systems with a strictly positive mass gap) then, in the
Heisenberg picture, states are independent of t.



Postulates for Non-Relativistic Quantum Mechanics
P-1) “Principle of Diminishing / Declining Potentialities”

An isolated but open system S is characterized by the property

E≥t ′ $ E≥t , ∀ t ′ > t . (PDP) (2)

In QED, (PDP) is a consequence of Huygens’ Principle; (photons are
massless). – If (PDP) holds then states generally depend non-trivially
on time t; (a consequence of entanglement).

P-2) “Type-I property”

The algebra E≥0 is isomorphic to the algebra of bounded operators on a
Hilbert space H0 ⊆ H. – Note: P-2) is special to NR QM!

P-2) implies that a state on E≥0 is given by a density matrix, ρ0, on H0.
The isomorphism E≥t ' E≥0 implies that a state of S at time t is given
by a density matrix on H0, too. – Let ES be a large ensemble of systems
' S ; let ρ0 be the state of all the systems in ES at an initial time t0 = 0.
Then the average, ρt , over ES of their states at a later time t > 0 (which
is called an “ensemble state”) is given by restricting the initial state
ρ0 to the algebra E≥t . In the Schrödinger picture, this means that

Tr
(
ρt · X

)
:= Tr

(
ρ0 · e itHSXe−itHS

)
, ∀X ∈ E≥0 . (3)



The state reduction postulate
When formulated with precision, Equation (3) implies that

ρt = etL[ρ0], t > 0, (4)

where
{
etL

∣∣ t ≥ 0
}

is a semigroup of completely positive linear maps
(i.e., L is a Lindblad generator) gen.mapping pure to mixed states.

P-3) “State-Reduction Postulate”

At all times t > 0, the state of an individual system in ES satisfying
Postulates P-1) and P-2) is given by a finite-rank orthogonal projection,
πt , belonging to a potential event e ⊂ E≥t that actualizes at time t;
πt is a random object obtained by “purifying” / “unraveling” the
evolution described in Eq. (4). A generalized Born Rule holds.

The statements in P-3) will be made precise in Sect. 5.

The new elements of the ETH-Approach to QM, as compared to
text-book QM, are ingredient D. (notion of states), and Postulates
P-1) (PDP) and P-3) (state-reduction postulate) – with far-reaching
consequences (!), e.g., for solving the infamous “measurement
problem” in QM (a “no-problem”), the “information paradox,” etc..



3. Non-relativistic models of matter interacting with the
quantized radiation field – fluorescence of atoms

We will consider systems, S , consisting of a static atom (orbital motion
neglected) with N = 2, 3, . . . internal states of energies E0 < · · · < EN−1,
described by a complete orthonormal system,

{
ψ0, . . . , ψN−1

}
, of

eigenstates of a matrix HA, the Hamiltonian of the atom, acting on the
Hilbert space hA := CN :

HAψj = Ejψj , for j = 0, 1, . . . ,N − 1 .

The atom is coupled to the quantized electromagnetic field. Given (ij),
one specifies a transition amplitude, dij , for a transiton from ψi to ψj ,
i , j = 0, 1, . . . ,N − 1, with dij = dji ∈ C, accompanied by emission of a
photon of frequency ωij ≈ h̄−1[Ei − Ej ] if i > j , and by absorption of a
photon of frequency ωij ≈ h̄−1[Ej − Ei ] if i < j .

The state space of the photons is the usual Fock space, F .

In text books, the dynamics of the atom coupled to the quantized
radiation field is described by unitary evolution on the Hilbert space
H := hA ⊗F generated by a Hamiltonian



Dynamics of atom coupled to the radiation field

H := HA ⊗ 1+ 1⊗ Hf + eHI ({dij }) ,

where Hf is the Hamiltonian of the non-interacting electromagnetic field,
e is the elementary electric charge, and HI is an operator determined by
the transition amplitudes

{
dij

}
and describing the creation or annihilation

of a photon.

In a non-relativistic regime where the velocity of light c →∞, this
model fits perfectly into the formalism of the ETH-Approach (Sect. 2):
The algebras E≥t (see Eq. (1)) are isomorphic to algebras B(hA ⊗F>t),
where F>t is the subspace of F obtained by applying arbitrary electro-
magnetic field operators localized at times ≥ t to the vacuum. It is not
difficult to show that the Principle of Diminishing Potentialities

(
see

P-1), Eq. (2)
)

holds.

For simplicity we suppose that, at an initial time t0 = 0, S is prepared in
a state without any photons; i.e., the radiation field is in its so-called
vacuum state,

∣∣∅〉. In the limit where c →∞, the state of S restricted
to the algebra E≥t is then always given by the tensor product of an
atomic density matrix Ωt with the projection,

∣∣∅〉〈∅∣∣, onto the vacuum
state of the radiation field, for all times t.



The time evolution of ensemble states

This is because if c =∞ photons emitted at times < t have already
escaped to spatial infinity at time t, This fact allows us to entirely
neglect the degrees of freedom of the radiation field, provided the
latter is prepared in its vacuum state.

Let Ω0 be the density matrix describing the initial state of the atom at
time t0 = 0. Then the ensemble state of S at time t, obtained by
restricting the initial state ρ0 := Ω0 ⊗

∣∣∅〉〈∅∣∣ to the algebra E≥t , is
given by

ρt = Ωt ⊗
∣∣∅〉〈∅∣∣ ,

where Ωt is a certain density matrix on hA. As asserted in Sect. 2, the
evolution equation for Ωt is given by a Lindblad equation

Ω̇t = Lα[Ωt ] , with

Lα[Ω] := −i h̄−1
[
HA,Ω

]
+ α
∑

k

[
VkΩV ∗k −

1

2

{
Ω,V ∗k Vk

}]
,

(5)

where α = e2 (h̄ = 1) → dissipative nature of evolution of atom is
entirely due to its coupling to the radiation field!



The time evolution of states of individual systems?
The operators Vk , k = 1, 2, . . . , on hA can be calculated from the
transition amplitudes

{
dij | i , j = 0, 1, . . . ,N − 1

}
and the “form factors”

of photon creation- and annihilation operators appearing in the
interaction Hamiltonian HI .

“Purifying” / “unraveling” of Eq. (5) will yield the non-linear Law of
the stochastic dynamics of individual quantum systems ' S , which
is given by what we call a “quantum Poisson jump process” (see
Sect. 5). “Unraveling” involves interpreting the spectral projections
of a density matrix describing an ensemble state at time t as an “event”
actualizing at time t.

In the next Section, I explain the process of “unraveling” a linear
evolution equation for ensemble states on the simpler example of the
discrete diffusion equation “unravelled” by the law of simple random
walks on a lattice.

—



4. Diffusion and the theory of random walkers

We consider a large ensemble, E, of identical, non-interacting random
walkers on the simple lattice Zν, ν = 1, 2, 3, . . . An “ensemble state” at
time t is given by the density, ρt , of random walkers on Zν. The
time-dependence of ρt is governed by the diffusion equation

ρ̇t(x) ≡ ∂ρt/∂t = D
(
∆ρt

)
(x) = D

[ ∑
y :|y−x |=1

ρt(y)
]
− 2νD ρt(x) , (6)

where ∆ is the discrete Laplacian, D = diffusion constant, and the sum
on the right side of (6) extends over all sites y that are nearest neighbors
of x (indicated by |y − x | = 1).
The diffusion equation is a linear, deterministic evolution equation for
the ensemble state ρt ; it is the analogue of the Lindblad equation (5).

A solution ρt of (6) is non-negative, for all times t > 0, provided ρ0 is
non-negative; (a consequence of the fact that the heat kernel,

(
etD∆

)
xy

,

is positivity preserving). Moreover,
∑

x∈Zν ρt(x) is independent of time
t; hence we may (re-)normalize ρt such that

∑
x ρt(x) = 1, for all t ≥ 0.



The stochastic motion of individual random walkers

We would like to understand what kind of stochastic motion of a single
random walker ω ∈ E implies that the time-dependence of an ensemble
state ρt is determined by the diffusion equation (6). For this purpose, we
have to “unravel” this equation.

It helps intuition to re-write it in the form

ρt+dt(x) = ρt(x) + D
(
∆ρt

)
(x) · dt +O(dt2) , (7)

where dt is assumed to approach 0.

“Ontology”:

The “true” state of an individual random walker ω ∈ E at an arbitrary
time t is a site xω(t) ∈ Zν, corresp. to ρt(x ;ω) := δxω(t)(x), x ∈ Zν,
(a “pure state”), where δy (x) ≡ δyx is the Kronecker δ.

During a time interval [t, t + dt), a random walker ω may remain at
xω(t), or it may jump to a nearest-neighbor site y , with

∣∣y − xω(t)
∣∣ = 1;

i.e., its state may “jump” from δxω(t) to δy , with
∣∣y − xω(t)

∣∣ = 1.
Equation (7) determines the probabilities for ω to remain at xω(t) or to

jump to site y , with
∣∣y − xω(t)

∣∣ = 1.



The stochastic motion of an individual random walker
We write (7) as

ρt+dt(x) =
[
1 − 2D ν dt

]
ρt(x) +

∑
y :|y−x |=1

[
D dt

]
ρt(y) +O(dt2) ,

with ρt(x) = ρt(x ;ω) = δxω(t)(x) ⇒ ρt+dt is a convex superposition of
pure states corresponding to sites xω(t) and xω(t) + δ, where δ ranges
over lattice unit vectors. The coefficients appearing in this superposition
can be interpreted as probabilities. If dt is tiny, ρt+dt(·;ω) is given by

ρt+dt(·;ω) =

{
δxω(t), with prob. pnj [t, t + dt] := 1 − 2νD dt ,

δxω(t)+δ, with prob. pδ[t, t + dt] := D dt, ∀δ, (8)

where “nj” stands for “no jump”, “δ” stands for a jump from xω(t) to
xω(t) + δ in the time interval [t, t + dt); (multiple jumps have negligible
probability o(dt)). Note that pnj [t, t + dt] +

∑
δ p
δ[t, t + dt] = 1.

The first equation in (8) implies that

pnj [t
′, t ′′] = e−2νD(t ′′−t ′), for t ′′ > t ′.



A Poisson jump process
Suppose xω(τ) is a random walker starting at τ = 0 at an arbitrary site
ω(0) ∈ Zν and making n = `(ω) jumps along a given SRW ω, at times
τ ∈ [tk , tk + dtk), k = 1, . . . , n, until it stops at some time t. By (8), the
probability that a random walker traces out this “history” is given by

Wω

[
t1, . . . , tn

] n∏
j=1

dtj : =

=
{ n∏

k=1

pnj [tk−1, tk ] pω(k)−ω(k−1)[tk , tk + dtk ]
}
pnj [tn, t]

= e−2νD·tdt1 . . . dtn , where t0 = 0 < t1 < · · · < tn < t .

Poisson jump process→ Mean square distance travelled by random walker in time t is ∝ t:

Eω
[
xω(t) − xω(0)

]2
=
∑

n

Eω
[
ω(n) −ω(0)

]2︸ ︷︷ ︸
=n

(2νD · t)n

n!
e−2νD·t

= 2νD · t =
∑

y∈Zν

(
etD∆

)
xy

[
y − x

]2
; etc.



5. A theory of fluorescence of atoms derived from the
ETH-Approach
We consider a system ' S , as in Sect. 3, prepared at time t0 = 0 in an
initial state Ω0 ⊗

∣∣∅〉〈∅∣∣, where

Ω0 := Π0 is a pure state, i.e., Π0 is a rank-1 orthogonal projection,

and
∣∣∅〉〈∅∣∣ is the vacuum state of the radiation field ( 6 ∃ any photons),

which we describe in the limiting regime where c →∞. As in Sect. 3,
we suppose that 6 ∃ any detectors recording photons.

I recall that, in the Schrödinger picture, the ensemble state at time t is
then given by Ωt ⊗

∣∣∅〉〈∅∣∣, ∀ t, where Ωt satisfies a Lindblad equation

Ωt+dt = Ωt + Lα[Ωt ]dt +O(dt2) , with

Lα[Ω] := −i
[
HA,Ω

]
+ α
∑

k

[
VkΩV ∗k −

1

2

{
Ω,V ∗k Vk

}]
,

Ωt=0 = Ω0 .

(9)

According to the ETH-Approach, the state of an individual system iso-
morphic to S is ∝ Πt ⊗

∣∣∅〉〈∅∣∣, where Πt is an orthogonal projection of

finite rank, ∀ times t > 0;
(
State Reduction Postulate, see Sect. 2, P-3)

)
.



Diagonalizing Ωt+dt
For simplicity, we assume that Πt is of rank 1, i.e., a pure state. Then
the state at time t + dt, when averaged over a large ensemble, ES , of
systems, all identical to S and prepared in the pure state Πt ⊗

∣∣∅〉〈∅∣∣
at time t, is given by Ωt+dt ⊗

∣∣∅〉〈∅∣∣, where, according to Eq. (9),

Ωt+dt = Πt + Lα[Πt ] dt +O(dt2) . (10)

The state Ωt+dt isn’t pure, anymore. Since Ωt+dt = Ω
∗
t+dt > 0, with

tr
(
Ωt+dt) = trΠt = 1, the decomposition of Ωt+dt into a convex combi-

nation of disjoint projections takes the form (↗ spectral theorem)

Ωt+dt = pnj [t, t + dt] Π̂0
t+dt +

∑
δ=1,...,N−1

pδ[t, t + dt] Π̂δt+dt , (11)

where Π̂δt+dt =
Πδt+dt

tr(Πδt+dt)
, the ev’s pnj ≡ p0, pδ, δ ≥ 1, have the properties

pnj [t, t + dt] = 1 −O(dt) > 0,

pnj > p1 > · · · > pN−1 > 0, with pδ = O(dt), ∀ δ ≥ 1 ,

pnj [t, t + dt]+
∑

δ=1,...,N−1

pδ[t, t + dt] = 1 , (nj = “no jump”) .



The state-reduction postulate of the ETH - Approach
According to the State Reduction Postulate, one of the ops.Π̂δt+dt ,
δ = 0, 1, . . . ,N − 1, randomly chosen, is the state of an individual atom
at time t + dt: According to the Born Rule, the probability, or
frequency, that Π̂δt+dt (for arb. δ) is chosen is given by pδ[t, t + dt].

In order to come up with explicit expressions for these quantities, we
apply “infinitesimal (analytic) perturbation theory” (IPT ),
considering Πt in (10) as an unperturbed operator (H0), Lα[Πt ] as a
perturbation (V ), and dt =“coupling const.” (strength of perturbation).

Digression on IPT : Let H0 be an operator on CN with a simple
eigenvalue E0 separated from the rest of its spectrum by a strictly
positive gap. We let Π :=

∣∣ψ0

〉〈
ψ0

∣∣ be the projection onto the
eigenvector, ψ0, of H0 corresponding to the eigenvalue E0. Let V
be an operator on CN , and consider the perturbed operator

H(ε) := H0 + εV , with ε ≡ dt � 1 .

We are interested in formulae for the ev E0(ε) of H(ε) growing out of the
unperturbed ev E0 and the eigenprojection, Π(ε), onto the eigenvector of
H(ε) corresp. to E0(ε).



Infinitesimal (analytic) perturbation theory
Setting Π⊥ := 1− Π, an anti-symmetric operator S is defined by

S :=
(
H0 − E0

)−1
Π⊥ · V · Π+ Π · V · Π⊥

(
E0 − H0

)−1
. (12)

IPT : The ev E0(ε) and the eigenprojection Π(ε) are given by

E0(ε) =E0 + ε · tr
(
Π · V

)
+O(ε2)

Π(ε) =Π− ε
[
S , Π

]
+O(ε2) .

(13)

Up to errors of order O(ε2), the remaining eigenvalues of H(ε) can
be found by diagonalizing the matrix Π⊥ · H(ε) · Π⊥.

The equation for E (ε) is called Feynman-Hellmann theorem, the one for
Π(ε) is first-order (Rayleigh-Schrödinger) perturbation theory.

Remark: Given a differentiable family,
{
Ht

∣∣ 0 ≤ t ≤ 1
}

, of operators
with the property that the spectrum and the eigenvectors of H0 are
known explicitly, one can find the spectrum and the eigenvectors of
Ht , 0 < t ≤ 1, by solving an initial value problem consisting of a system
of ordinary differential equations derived from formula (13). This very
useful variant of perturbation theory is what I call IPT. (Applications!)



IPT and the stochastic, non-linear evolution of individual
systems in QM

We use IPT to derive from the Lindblad eq. (10) a system of ODE’s for

the states Π̂0
t = Πt in the absence of quantum jumps, see (11), assuming

for simplicity they are pure (i.e., rank 1), at all times t. We set
H0 := Πt ,V := Lα[Πt ], ε := dt. Then spec(H0) is given by

{
1, 0, . . . , 0︸ ︷︷ ︸

N−1 times

}
.

Eq. (12) ⇒ S ≡ St := −Π⊥t · Lα[Πt ] · Πt + Πt · Lα[Πt ] · Π⊥t , (14)

which is a well-defined anti-symmetric operator on CN . Applying IPT we
find the following system of differential equations:

(i) Feynman-Hellmann ⇒
pnj [t, t + dt] = 1+tr

(
Πt · Lα[Πt ]

)
dt +O(dt2), hence

`n pnj [t, t + dt]

dt
= tr

(
Πt · Lα[Πt ]

)
< 0 ⇒

pnj [0, t] = exp
{∫ t

0

tr
(
Πs · Lα[Πs ]

)
ds
}
< 1



Time-evolution of state in absence of “quantum jumps”

(ii) Time-dependence of state, Πt , in the absence of quantum jumps,
(i.e., eigenprojections corresp. to ev pnj [t, t + dt] are chosen in an
open interval of times containing t): Eqs. (11) & (13) ⇒

dΠt

dt
= Π⊥t · Lα[Πt ] · Πt + h.c .

This is a system of non-linear (cubic) differential eqs. for Πt .

(iii) “Quantum jumps”: The spectrum of the non-negative matrix

Π⊥t · Lα[Πt ] · Π⊥t is given by
{ pδ[t,t+dt]

dt

∣∣δ = 1, 2, . . .
}

. Hence

0 < pδ[t, t + dt] =O(dt), δ = 1, 2, . . . , and

pnj [t, t + dt] +
∑

δ=1,2,...

pδ[t, t + dt] = 1.

(iv) For α = 0 (i.e., atom decoupled from radiation field), one finds that

pnj [0, t] ≡ 1 ↔ no quantum jumps (!),
dΠt

dt
= −i

[
HA, Πt

]
,

→ unitary evolution, as expected!



State trajectories with “quantum jumps”
We now introduce an analogue of the Wiener measure of BM (more
precisely of the measure defined at the end in Sect. 4). We suppose the
state of a system ' S exhibits “quantum jumps” at t1 < · · · < tn < tfin,
with t1 > 0, tn+1 ≡ tfin. The state evolves continuously between jumps at
times tj and tj+1 according to the differential equations derived in item

(ii); it is denoted by Π
δj |δj−1

t , with tj < t < tj+1, where t0 = 0,

Π
δ0|δ−1

t=0 = Π0 is the initial state of the system. We propose to calculate
the probability of a trajectory, Tn, of states of an individual system ' S
given by

Tn :=
{
Π
δj |δj−1

t

∣∣∣tj < t < tj+1, j = 0, 1, . . . , n
}
, (15)

where Π
δj |δj−1

tj
is (∝) the eigenprojection corresponding to the eigenvalue

pδj [tj , tj + dtj ] of the density matrix

Ωtj+dtj = Π
δj−1|δj−2

tj
+ Lα[Π

δj−1|δj−2

tj
] dtj ,

see Eqs. (10) & (11). Following (i), we define

p
δj |δj−1

nj [tj , tj+1] := exp
{∫ tj+1

tj

tr
(
Π
δj |δj−1

t · Lα
[
Π
δj |δj−1

t

])
dt
}
.



A quantum-mechanical analogue of the Wiener measure
The probability, WTn , of the trajectory Tn introduced in Eq. (15) is then
given by

WTn

[
δ1, t1, . . . , δn, tn

] n∏
j=1

dtj :=

=
{ n−1∏

j=0

p
δj |δj−1

nj [tj , tj+1]p
δj+1 [tj+1, tj+1 + dtj+1]

}
pδn,δn−1

nj [tn, tfin] .

(16)

This formula serves to determine the probability of “measureable sets” of
quantum trajectories, T, of individual systems ' S with an arbitrary
number of “quantum jumps” in the time interval [0, tfin].

Remarks: (1) If an average, E, over the states in the trajectories Tn is
taken, using the “measures” WTn , with n = 0, 1, 2, . . . , then we recover
the ensembles states Ωt obeying the Lindblad equation (10).

(2) The equation in (ii) can be re-written as a non-linear Schrödinger
equation for a pure state vector Ψt , with Πt =

∣∣Ψt

〉〈
Ψt

∣∣ ≡ Ψt · Ψ∗t .→ Novel approach to “quantum chaos.”



6. The example of a two-level atom – fluorescence
A pictorial representation of quantum trajectories of states (denoted here
by ~nt) of individual systems ' S :

In the following, we consider a simple concrete example. The atom has
only two internal states, i.e., HA = C2, and its Hamiltonian is given by

HA := h̄ω

(
1 0
0 0

)
. (17)



The time evolution of ensemble states
The states of the atom are described by 2× 2 matrices of the form

Ω ≡ Ω(~n) :=
1

2

[
12 + ~n · ~σ

]
, ~n ∈ R3, with |~n| ≤ 1 , (18)

where ~σ = (σ1, σ2, σ3) = vector of Pauli matrices. The state Ω(~n) is
pure iff ~n is a unit vector, i.e., ~n lies on the so-called Bloch sphere; and

Ω(~n) +Ω(−~n) = 12 .

We introduce lowering- and raising operators

σ− :=

(
0 0
1 0

)
, σ+ :=

(
0 1
0 0

)
, resp.

In order to describe the fluorescence of such an atom, one sets

Lα[Ω] := −i h̄−1
[
HA,Ω

]
+ α

[
σ−Ωσ+ −

1

2

{
Ω,σ+σ−

}]
. (19)

The Lindblad equation can then be written as a linear equation for the
vector ~n in the unit ball of R3:



Unraveling the Lindblad evolution

~̇n(t) =
ω

2
~e3 ∧ ~n(t)︸ ︷︷ ︸

precession around ~e3

−
α

4

[
2~e3 + ~n(t) + n3(t) · ~e3

]
.︸ ︷︷ ︸

dissipation

(20)

We observe that ~n(t)→ −~e3, as t →∞.
We now “unravel” Eq. (20) by specializing the procedure of Sect. 3 to the
present model: Let ~n(t) be a unit vector, and let ~n(t + dt) be given by

~n(t + dt) = ~n(t) +
{ω

2
~e3 ∧ ~n(t) −

α

4

[
2~e3 + ~n(t) + n3(t) · ~e3

]}
dt .

The principles of the ETH - Approach then imply that ~n(t + dt) must be
replaced by a unit vector ~n(t + dt) whose Law is given by (see figure!)

~n(t + dt) =
~n(t + dt)∣∣~n(t + dt)

∣∣ , with probability pnj [t, t + dt],

~n(t + dt) =−
~n(t + dt)∣∣~n(t + dt)

∣∣ , with probability pflip[t, t + dt] ,

(21)



The Poisson flip process on the Bloch sphere
where

pnj [t, t + dt] =
1 +

∣∣~n(t + dt)
∣∣

2
= 1 −O(dt)

pflip[t, t + dt] =
1 −

∣∣~n(t + dt)
∣∣

2
= O(dt) ,

(22)

hence pnj [t, t + dt] + pflip[t, t + dt] = 1, as required.

Theorem: Suppose there isn’t any flip in the time interval [t1, t2), with
~n(t = t1) a given unit vector. Then, for t ∈ [t1, t2), ~n(t) has the form

~n(t) =

√1 − n3(t)2 cos(ωt + γ)√
1 − n3(t)2 sin(ωt + γ)

n3(t)

 ,

for some constant γ, where n3(t) solves the non-linear equation

ṅ3(t) = −
α

4

(
1 + n3(t)

)(
1 − n3(t)

)(
2 + n3(t)

)
. (23)



Consequences of (23), and formulae for pnj

I If n3(t1) = −1, i.e., atom in ground-state, then n3(t) ≡ −1, and

pnj [t1, t] ≡ 1, ∀ t > t1 .

I If n3(t1) = +1, i.e., atom in excited state, then n3(t) = +1, for
t ∈ [t1, t2), followed by transition to ground-st. at time t2, with

pnj [t1, t2) = exp[−α (t2 − t1)] (exponential decay law) .

I If n3(t1) ∈ (−1, 1) then the state variable ~n(t) of the atom
precesses around ~e3 with angular frequency ω, and

d`n
(
pnj [t1, t]

)
dt

= −
α

4

(
1 + n3(t)

)2

,

whose solution is given by

pnj [t1, t] = exp[−λ(t)], where λ(t) =
1

2

∫n3(t1)

n3(t)

1 + τ

(1 − τ)(2 + τ)
dτ .



7. Conclusions

Using these (very explicit) results and (22), state trajectories with flips at
times tn + dtn, n = 1, 2, . . . , can be treated as in Sect. 3.

I For sufficiently large times (after finitely many flips), the atom is
always found in its ground-state; i.e., ~n(t)→ −~e3, as t →∞.

Conclusions: In idealized models of systems of charged matter interacting
with the quantized radiation field, described in the limit where the
velocity of light c →∞, the principles of the ETH-Approach to (or the
“ETH-Completion” of) Quantum Mechanics apparently yield totally
explicit predictions concerning the stochastic time evolution of states
of individual systems. This non-linear evolution is given by a novel type
of stochastic process, called quantum Poisson jump process, which I
have described in this talk; (see also L. Diósi, J. Phys. A 21, 2885 (1988)
for earlier related, but conceptually problematic results).

It would be interesting to test the fine-print of these predictions in
experiments. The mathematics of quantum Poisson jump processes
(& of generaralizations thereof) deserves to be worked out more fully.

A new (dynamical) approach to “quantum chaos” is emerging.



Relativistic quantum theory?
Remarks:

I Physics. As indicated in this lecture, fields describing massless
modes, in particular the EM field, are responsible for the stochastic
nature of the evolution of states of individual systems.

I The methods, described in this lecture on the example of the theory
of fluorescence of atoms, can also be used to describe measure-
ment processes by using nothing but the basic principles of the
ETH- Approach. (An outline of this has been published in a paper
with A. Pizzo.)

I A variant of the ETH-Approach applicable to relativistic
quantum theory has been developed, too. (It deserves to be
worked out more fully.)

Thanks for listening!


