
The Appearance of Events in Quantum

Mechanics – a New Dynamical Law of Nature

“The interpretation of quantum mechanics (QM) has been dealt with

by many authors, and I do not want to discuss it here. I want to deal

with more fundamental things” – P.A.M. Dirac

Text-book QM resulted from the profound discoveries of:

M. Planck A. Einstein W. Heisenberg P. A. M. Dirac

Laws of Nature – J.F., December 7, 2021



Dedicated to the memory of Vaughan Jones, an out-
standing mathematician deeply inspired by and inspiring
Quantum Physics, and a very generous colleague; ...

Vaughan F. R. Jones, 31.12.1952 – 6.9.2020



... and of Detlef Dürr, who had a profound understanding
of the foundations of Quantum Theory that he gladly
shared with his colleagues

Detlef Dürr, 4.3.1951 – 3.1.2021, singing the “Lied vom Meer”

We have lost two great colleagues and wonderful friends who will be
missed!

Sadly, J. Fröhlich



The Problem of the Big Unsolved Problems
To our dismay, it appears that, during the past 100 or more years,
humanity has been unable to solve, or unwilling to cope with, any of the
major problems threatening its own survival. And it is getting ever worse!

Examples of major problems not resolved, as of now:

I Nuclear disarmament - problem present for the past 75 years

I The demographic time-bomb - problem known for � 75 years

I Climate change - problem identified � 100 years ago

I Safe generation of clean and renewable energy, and energy storage

I Excesses of turbo-capitalism & of a dysfunctional monetary system

I Fostering of secular, enlightened, liberal societies; integration of
immigrants from other cultural backgrounds into our societies

I Equal rights and equal privileges for women

I Arab-Israeli conflict, conflicts in Northern Ireland, Catalonia . . .

I Unsolved problems in Physics and other sciences – Example:
“It seems clear that the present quantum mechanics is not in its

final form.” (P.A.M. Dirac) Completion of QM, not Interpretation!
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1. What this Lecture is About

Summary : Our purpose is to extend the standard formalism of QM and
complete it in such a way that the resulting theory makes sense. The
extension, yielding a new Law of Nature, is called

ETH - Approach to QM.

The ETH - Approach to QM supplies the fourth one of four pillars QM
rests upon: (i) Physical quantities characteristic of a physical system are
represented by s.-a. linear operators; (ii) the time evolution of operators
representing physical quantities is given by the Heisenberg equations;
(iii) meaningful notions of Potential and Actual Events and of states; and

(iv) a general statistical Law for the Time Evolution of states.

Core of talk: Besides sketching the ETH-Approach to QM, I will discuss
simple models of a very heavy atom coupled to the radiation field in a
limit where the speed of light tends to 1, illustrating the ETH-Approach.

General goal: I am determined to remove some of the enormous confu-

sion befuddling many colleagues who claim to work on the foundations of
QM... Of course, hardly anybody expects that I will succeed – I do!



Topics to be Addressed – Today or in the Future
I Sketch a novel completion of Quantum Mechanics (QM), called

“ETH-Approach to QM” – introducing:

I Sharp notions of: • Isolated physical systems in QM • States of
physical systems (% Gleason, Maeda) • Potential - and Actual

Events in QM (% Haag) – and discussing the:

I Inadequacy of Schrödinger Eq. ! ETH-Approach predicts stati-
stical law for time evolution of states of physical systems, confirming
probabilistic nature of QM ! “quantum branching processes.”

I ⇤Clarify the role of (Space-)Time and of the electromagnetic field in
QM. How does QM distinguish between past and future? Aristotle:
potentialities versus actualities; Leibniz ’ vision of space-time;
Huygens’ Principle. – The ETH - Approach predicts that a
consistent Quantum Theory of Events is necessarily relativistic,
and space-time must be even- dimensional ...

Today’s focus: Non-Relativistic QM; but features of local relativistic
QT are used to motivate some constructions; in particular, our models
illustrating ETH-Approach to QM are inspired by relativistic QED !

The discussion of these models is among the main topics of lecture.



Generalities - 1: Theories Cannot be Fully Predictive

This drawing illustrates that relativistic theories are never fully predictive,
and that there is a fundamental dichotomoy between past and future:

| {z }
t0: time right after inflation! event horizon) initial conditions not fully accessible!

Past = History of Actualities (Facts) / Future = Ensemble of Potentialities

This fundamental dichotomy should be retained in Quantum Mechanics!



Generalities - 2: Direct versus Indirect Measurements
Besides leading to a precise law for the time evolution of states in QM, a
key purpose of the ETH- Approach is to solve the infamous “measure-

ment problem” of QM; namely the problem of developing a theory of
direct/projective measurements highlighting the role of the e.m. field and
free of internal inconsistencies. –

⇥
Will not treat th. of indirect/weak

measurements, which is well understood, assuming that 9 good theory
of direct/projective measurements of probes! (% Kraus et al.)

Examples of indirect measnts.: Haroche-Raimond exp.; particle tracks ...

(Mass-Küm, Ba-Be, BFFSch, BCrFFSch, ...; Fi-Te, BBenFF
#

, BenFF, ...)
⇤



Generalities - 3: Waves or particles? Waves and particles!

Let’s briefly discuss the well known double-slit experiment:



The role of light in the emergence of a classical world
Apparently, an illumination by light of the cavity to the right of the
screen containing the double slit has the e↵ect that “electron waves” are
converted to “corpuscles” by eliminating interference e↵ects (which also
illustrates the “retarded choice paradox” of Wheeler): The quantum
world, which involves potentialities, rep. by non-commuting ops. giving
rise to interference and to Heisenberg’s uncertainty relations, approaches
the factual classical world! – This becomes strikingly manifest by
considering a spherically symmetric ball of radioactive material emitting
↵-particles into a cavity (Darwin, Mott, ... , Figari-Teta, (B)BFF ):

Dark cavity Illuminated cavity

! Must understand the special role of light in producing events,

facts and “classicality”!



Generalities - 4: The Schrödinger Equation does Not
Describe the Time Evolution of States in QM

To show this consider real exp. (% FFS) or/gedanken exp., such as
Wigner’s friend paradox (% Wigner, Hardy, Frauchiger-Renner, ...):

Courtesy Frauchiger & Renner

⇥
F measures the spin of the green particle in the z-direction. After a
successful measurement, but without knowing its result, F makes
predictions of future measnts. using a mixed state, while W uses unitary
evolution of the pure initial state of the entire lab, including F , to make
predictions. The statistics of future measurement outcomes predicted by
F and W are then di↵erent.
) It is not true that the state of the lab evolves in time linearly !

⇤

! Must find the law of evolution of states in QM !



2. The ETH-Approach to NR Quantum Mechanics
Purpose: Clarify the notions of states in QM, of Potential &
Actual Events featured by isolated open physical systems !

q.m. Law describing the stochastic evolution of states

Let S be a physical system. Physical quantities characteristic of
S , including potential events in S , are represented by certain
abstract bounded, selfadjoint linear operators

bX = bX ⇤ 2 OS (a family of operators) ,

where the only properties of OS are that it contains 1 and that if
bX 2 OS and F is a bounded continuous function then F ( bX ) 2 OS .

Time is a fundamental quantity in NR physics. It is described by
R, or, as in the following, by Z, and parametrizes evolution of S .
Associated with every time t there is a representation of OS by
concrete selfadjoint operators on a separable Hilbert space HS :

OS 3 bX 7! X (t) = X (t)⇤ 2 B(HS) .



Physical Quantities and Their Time Evolution in the
Heisenberg Picture

⇥
In concrete examples of physical systems, X (t) can be localized in space
and in time – Haag talks of “local observables”, Bell of “local beables”:

X (t) =

Z

I

d⌧

Z

R3

dx x(⌧ + t, x) h(⌧, x) ,

where x(⌧, x) is a hermitian operator-valued distribution on HS (e.g., a
particle density, a component of a spin density, or an energy density, ...);
h(⌧, x) is a real test function with support in a compact interval, I , of the
time axis. We then say that X (t) is localized in the time interval I + t.

⇤

! Concrete examples motivate our assumption that every operator X

representing a physical quantity bX 2 OS is localized in a compact

interval, denoted IX , of the time axis; (IF (X ) = IX , for F as above).

In the Heisenberg picture, time evolution of operators X (t) representing
physical quantities bX of an isolated physical systems S is described by
unitary conjugation with the propagator of the system (H: Hamiltonian):



Algebras Generated by Operators Representing Physical
Quantities Localized in Compact Intervals of Time

X (t 0) = e
i(t0�t)H/~

X (t)e�i(t0�t)H/~, for t, t 0 in R . (1)

Let I be an arbitrary interval of future times, i.e., I ⇢ [t0,1), where t0 is
the present. We define EI to be the ⇤-algebra generated by arbitrary finite

sums of arbitrary finite products of operators

�
X
��X represents bX 2 OS at some time � t0, with IX ✓ I

 
.

We define

E�t :=
_

I⇢[t,1)

EI , and E :=
_

t2R
E�t

k·k
, (2)

where the algebras E�t , t 2 R, are assumed to be weakly closed!1

By definition,

EI ◆ EI 0 if I ◆ I
0 , E�t ◆ E�t0 if t

0 > t .

1Passing to von Neumann algebras is convenient, because the spectral
projections of any element of the algebra will then also belong to the algebra!



The Principle of Diminishing Potentialities
Definition 1: Let S be an isolated physical system. Potential (future)
Events in S that might actualize at a time t � t0 are special kinds of
physical quantities, namely elements of partitions of unity, Ft ,

Ft =
�
⇡⇠

�� ⇠ 2 X
 
⇢ E�t , t � t0, X countable ,

X

⇠2X

⇡⇠ = 1 ,

of disjoint orthogonal projections, ⇡⇠ = ⇡⇤
⇠ on HS , with ⇡⇠ · ⇡⌘ = �⇠⌘⇡⇠.

An isolated system S is defined in terms of a co-filtration
�
E�t

�� t 2 R
 

of algebras generated by Potential Events satisfying Eq. (1).

The Principle of Diminishing Potentialities (PDP) is the statement that

E�t �
6=
E�t0 , whenever t

0>t � t0. (3)

This principle characterizes isolated open systems. It will be shown to
hold in simple models discussed later in this talk. (Closed systems are
ones for which E�t ⌘ E is independent of t ...)

A state of S at time t is given by a quantum probability measure on the
lattice of orthogonal projections in E�t , i.e., a functional, !t , with props.:



Potentialities and Actualities (% Aristotle)
• !t assigns to every orthogonal projection ⇡ 2 E�t a non-negative
number !t(⇡) 2 [0, 1], with !t(1) = 1,

• !t is additive, in the sense that

X

⇡2Ft

!t(⇡) = 1, 8 partitions of unity Ft ⇢ E�t . (4)

Remark: Gleason’s theorem (as generalized by Maeda) says that states,
!t , of S at time t, as specified above, are positive, normal, normalized

linear functionals on E�t , i.e., states on E�t in the usual sense. (States,
!t , can be obtained by restricting density matrices, !, on HS to E�t .)

Note that ! might be a pure “state.” But, since E�t$B(HS) , 8t <1,
assuming that (PDP) holds, !t will generally be a mixed state on E�t :
Entanglement! This observation opens the door towards a natural notion
of Actual Events – “actualities” – in our formalism and to a theory of
direct/projective measurements and observations.

In accordance with the “Copenhagen interpretation” of QM, we say that
some Potential Event in a partition of unity Ft = {⇡⇠|⇠ 2 X} ⇢ E�t (see
Def. 1, last slide) actually happens in the interval [t,1) of times,



The Centralizer of a State and its Center
i.e., becomes an Actual Event setting in at time t, i↵

!t(A) =
X

⇠2X

!(⇡⇠ A⇡⇠), 8A 2 E�t , (5)

no o↵-diagonal elements on R.S. of (5) – incoherent superposition!2

Next, we render the meaning of Eq. (5) precise.

Let M be an algebra, and let ! be a state on M. We define the
centralizer of a state ! on M by

C!(M) :=
�
X 2M

��!([A,X ]) = 0, 8A 2M
 

Note that C!(M) is a subalgebra of M and that ! is a normalized trace
on C!(M) ... ! The center, Z!(M), of C!(M) is defined by

Z!(M) :=
�
X 2 C!(M)

�� [X ,A] = 0, 8A 2 C!(M)
 
. (6)

! Good general notion of Actual Events – “actualities”: Let S be an
isolated physical system. In (6) we set M := E�t , ! := !t .

2Mathematical precision compells us to suppose that time is discrete.



Actual Events and time evolution of states

Definition 2: Given that !t is the state of S at time t, an Actual

Event is setting in at time t i↵ Z!t
(E�t) contains at least two

non-zero orthogonal projections, ⇡(1),⇡(2), which are disjoint, i.e.,
⇡(1) · ⇡(2) = 0, and have non-vanishing “Born probabilities”, i.e.,

0 < !t(⇡
(i)) < 1 , for i = 1, 2 .

Let us suppose for simplicity that Z!t
(E�t) is generated by a

partition of unity Ft = {⇡⇠|⇠ 2 X!t
} of orth. proj., where

X!t
= spec[Z!t

(E�t)] is a countable set. Then Eq. (5) holds true!

The Law describing the time evolution of states in QM is derived
from the following State Reduction-, or Collapse Postulate, which
makes precise mathematical sense if time is discrete (!):
Let !t be the state of S on E�t at time t. Let dt denote a time
step; (dt may be positive if time is discrete; otherwise we will let
dt tend to 0 at the end of our constructions).



The State-Reduction (Collapse) Postulate

We define a state on the algebra E�t+dt by setting

!t+dt := !t

��
E�t+dt

.

Axiom CP: Let Ft+dt :=
�
⇡⇠ | ⇠ 2 X!t+dt

 
be the partition of unity

generating the spectrum, X!t+dt
, of Z!t+dt

(E�t+dt).

Then ‘Nature’ replaces the state !t+dt on E�t+dt by a state

!t+dt(·) ⌘ !t+dt,⇠(·) := !t+dt(⇡⇠)
�1 · !t+dt(⇡⇠(·)⇡⇠) ,

for some ⇠ 2 X!t+dt
, with !t+dt(⇡⇠) 6= 0.

The probability, probt+dt(⇠), for the state !t+dt,⇠ to be selected

by Nature as the state of S at time t + dt is given by

probt+dt(⇠) = !t+dt(⇡⇠) (Born0s Rule) (7)

Remark: The mathematical theory obtained when the time step, dt,
tends to 0 is not analyzed rigorously, yet. ! Challenge for math.!



A Metaphoric Picture of the Time Evolution of States
in QM – According to “ETH”

Apparently, the time-evolution of states of a phys. system is described by
a stochastic branching process, with branching rules det. by Axiom CP.
This can be made precise, mathematically, if time is discrete, and it leads
to a good notion of projective measurements; see models discussed later.

E : “Events”, T : “Trees” of possible states, H: “Histories” of states.

This is di↵erent from and supercedes the “decoherence mumbo-jumbo”!



Remarks on the ETH-Approach

1. Actual Events might be recorded by “projective measurements” of
physical quantities: If an operator X 2 E�t repr. a physical quantity
of S is “well approximated” ... by an operator in Z!t

(E�t) then the
actual event setting in at time t amounts to a measurement of X .

2. A passive state, !t , is a state for which Z!t
(E�t) consists of only

two projections, ⇡ and ⇡?, with !t(⇡) = 1 and !t(⇡?) = 0. If !t is
passive it does not feature any event at time t. If !t is time- transl.
invariant & passive then !t0 is passive, 8t 0 > t. Thermal equilibrium

states and states of closed systems are passive at all times.

3. A microscopic system only weakly coupled to the radiation field has
the property that, for most times t, Z!t

(E�t) contains a projection,
⇡0, with the property that !t(⇡0) ' 1, while !t(⇡) ' 0, 8⇡ 6= ⇡0 in
E�t . The state of such a system is nearly constant in time, in the
Heisenberg picture (i.e., evolves according to the Schrödinger eq. in
the Schrödinger picture), except for rare instances when an unlikely
event makes it jump. For purely entropic reasons, such rare jumps
occur at a possibly very small, but non-zero rate, unless the state of
the system is a time-translation invariant passive state.



ETH-Approach to Local Relativistic Quantum Theory
Concerning this topic, I remark that the relativistic theory is based on the
following kinds of postulates:

I With every actual event, ⇡, one can associate a C
⇤-algebra, E>⇡, of

potentialities that “lie in the future of ⇡”, with ⇡ 62 E>⇡.

I The past of ⇡ consists of all actual events, ⇡� 6= ⇡, with the
property that E>⇡� contains ⇡ and E>⇡; E>⇡ is the smallest algebra
E>⇡� , with ⇡� in the past of ⇡.

I An appropriate modified version of the Principle of Diminishing

Potentialities then says that if ⇡0 is in the past of ⇡ then
�
E>⇡

�0 \ E>⇡� is non-trivial (1-dim.) .

I Locality: Every projection � not belonging to E>⇡ and not in the
past of ⇡ commutes with ⇡: [�,⇡] = 0.

I One can then formulate what is meant by a potential event
⇡+( 6= ⇡) contained in E�⇡ (i.e., in the future of ⇡) to actualize. It
turns out that this can be decided by only knowing ⇡ and all actual

events in the past of ⇡ (but in the future of the state the system
has been prepared in) ...



Probabilities of histories, given an initial state

One can then introduce history operators: Let ⇡1,⇡2, . . . ,⇡n be all the
events in the past of ⇡, but in the future of the state ! the system has
been repared in, ordered according to their occurrence. Thanks to our
assumption of locality, the following “history operator” is well defined:

H(n) :=
!Y

j=1,...,n

⇡j .

The probability of the “history of events” ⇡1,⇡2, . . . ,⇡n,⇡, given that the
system has been prepared in the state ! in the past of all these events, is
given by

prob
�
⇡1,⇡2, . . . ,⇡n,⇡ |!

 
= !

�
H(n)⇡H(n)⇤

�
.

Discussion: ...

The details – not discussed today – can be understood by invoking old
results of L. Landau (strict locality) and D. Buchholz (an analysis of
Huygens’ Principle in QFT). !



3. Huygens’ Principle and PDP

This discussion is inspired by ETH-Approach to relativistic QT .

Huygens’ Principle for massless modes (photons, gravitons, ...)
in isolated physical systems

) Principle of Diminishing Potentialities !

S : Isolated system consisting, for example, of a static atom located at
x = 0, coupled to the electromagnetic field. Concretely:

I Atom has M internal energy levels, Hilbert space hA ' CM .

I Hilbert space of e.m. field is Fock space, F, of photons; e.m. field
described by field tensor, Fµ⌫(⌧, x), with property that, for real-
valued test functions

�
h
µ⌫
 
on space-time, the operator

F (h) :=

Z

R⇥R3

d⌧ dxFµ⌫(⌧, x) h
µ⌫(⌧, x)

is self-adjoint on F and satisfies locality. The usual Hamiltonian of
the free e.m. field is denoted by H0; with H0 = H

⇤
0 � 0 on F.

Hilbert space of S :
HS := F⌦ hA .



A Concrete Model
Let V±

t be the forward/backward light cone above the space-time point
(t, x = 0). We define
Space-time diamonds: D[t,t0] := V

+
t \ V

�
t0 , with t

0 > t.
Bounded functions of field operators F (h), supp(hµ⌫) ✓ D[t,t0], generate
a (von Neumann) algebra AI=[t,t0]. We then define

D(0)
I

:= AI ⌦ 1
��
hA

, E (0)
I

:= AI ⌦ B(hA) ,

E (0)
�t

:=
_

I⇢[t,1)

E (0)
I

. (8)

PDP holds for non-interacting system: Setting I := [t, t 0], one has that

⇥
E (0)
�t0

⇤0 \ E (0)
�t

= D(0)
I

(an 1� dim. algebra !) (9)

Remark: Follows from Huygens’ Principle, namely from the fact that

[Fµ⌫(x),F⇢�(y)] = 0, unless x � y is light-like.

From now on, we discretize time: tn := n 2 Z. Speed of light: c .



Interacting Propagator, � / Illustration of HP
To describe interactions, pick a unitary operator U 2 E (0)

[0,1], and define

� := e
�iH0U. Then the propagator of the coupled system is given by

�n = e
�inH0U(n), (�n)⇤ = ��n, U(n) = · · · , n = 0, 1, 2, . . . (10)



PDP for the Interacting Model

It su�ces to consider time evolution for times t � t0 := 0. We
define

E := E(0)
�0 , E�n :=

�
��n

X �n
��X 2 E

 
. (11)

It is straightforward to verify PDP for the interacting model :
Using (10) and (11), one shows that

⇥
E�n0

⇤
0 \ E�n ' D[n,n0] , for n

0 > n, (12)

where D[n,n0] :=
�
U(n0)⇤ X U(n0)

��X 2 D(0)
[n,n0]

 
. Note that

�n�n
0 E�n �

n
0
�n = E�n0 $ E�n , for n

0 > n.

Preparing the system in an initial state, !0, at time n = 0, we
would like to determine the stochastic time evolution of states, !t ,
predicted by the law encoded in Definition 2 (Actual Events) and
Axiom CP of Sect. 2.



Stochastic Time Evolution with Memory
We consider an Example:

!0(X ) := trHS

�⇥��0ih0
��⌦ ⌦

⇤
X
�
, X 2 E ,

with |0i the vacuum vector in F, and ⌦ a density matrix on hA.

The state !0 does not entangle the atom with the e.m. field. Yet,
interactions will entangle them in the course of time, as expected.
Since the vacuum |0ih0| is not a “product state,” stochastic time

evolution of states of S exhibits memory e↵ects – explicit control
rather di�cult!

Matters simplify drastically in the limit where the speed of light, c ,
tends to 1, which we consider next.

In the limit c !1, the regions D[k,k+1] approach time slices,

k  t  k + 1 (Fig.!), and the algebras D(0)
[k,k+1] are given by

D(0)
[k,k+1] ' B(Hk), Hk

e.g .
= CN , for some N  1 , 8 k . (13)



4. A Heavy Atom Interacting with the R-Field
with Alessandro Pizzo

As c !1: electromagnetic field ! “R-field” (N <1, henceforth).

Follow evolution of S only for t � 0. Pick an orthonormal basis
�
�j
 N�1

j=0

in CN ; Sfin := set of sequences k := {kn}1n=0, with kn = 0, . . . ,N � 1 and
kn = 0, except for finitely many values of n 2 Z+. For k 2 Sfin, we define

�k :=
1O

n=0

�kn , �0 : “vacuum” (reference vector). (14)

The Hilbert space, F0, of the R-field is then given by the closure of the
space of finite linear combinations of vectors

�
�k

�� k 2 Sfin

 
in the norm

determined by the scalar product defined by

h�k ,�k0i :=
1Y

n=0

�kn,k0
n
. (15)

We then set
HS := F0 ⌦ hA .



The Propagator of the Model

We define a shift, �, on Sfin by �(k)n := kn+1, and define the
time-1 propagator of the R-field (before coupling to A) by

S�k := ��(k), k 2 Sfin ,

extended to F0 by linearity. Note that S�0 = �0. The time-1

propagator of the atom (before couplng to R-field) is given by a
unitary operator V on hA, and we set �0 := S⌦ V .

To introduce interactions, pick unitary U on CN ⌦ hA and define

U1 := U
��
H0

,Uk := �1�k

0 U1�
k�1
0 , k = 1, 2, . . . ,

U(n) := Un . . .U1, n = 1, 2, . . . , (16)

Interacting propagator of model given by
�
�n
 
n=0,1,2,...

, where

� := �0U1 (unitary) ) �n = �n0U(n), 8 n 2 Z+ , (17)



Time Evolution of States, According to “ETH”
Algebras:

E :=
�
finite sums of ops. F ⌦ C

��F 2 B(F0),C 2 B(hA)
 
,

E�n :=
�
��n

X �n
��X 2 E

 
, n = 0, 1, 2, . . . (18)

Initial state: Let ⌦0 be a density matrix on hA. We set

!0(X ) := h�k ,F �ki · tr
�
⌦0 · C

�
, with k 2 Sfin, X = F ⌦ C 2 E .

Our aim is to determine the time evolution of !0 according to the
Law (% Definition 2 & Axiom CP) of the ETH-Approach. Using
induction in time n, we then find that state, !n, on E�n is given by

!n

�
��n

X �n
�
= h��n(k),F ��n(k)i · tr

�
⌦n · C

�
, (19)

where ⌦n is a density matrix on hA / an orthogonal projection;�
⌦n

 
n=0,1,2,...

: sample path of a stochastic branching process:



Time Evolution of States – Summary
The stochastic time evolution of states in our model,

!0 ! · · ·! !n�1 ! !n ! · · · , !0 as above,

is described in terms of a quantum Markov chain which depends on
k 2 Sfin and acts on density matrices of atom. The sample paths,�
⌦n

 1
n=0

, are obtained by “unravelling” this Markov chain; (next slide).



A Very Simple Explicit Model
A simple example of an operator U describing interactions “A� R”:

Let
�
Qm

 M

m=1
be a partition of unity by orthogonal projections on hA –

for ultimate simplicity, Qm = | mih m|, where { m}Mm=1 is a CONS. Let
T

(m) be a unitary operator on CN , 8m = 1, . . . ,M. We define

U :=
P

M

m=1 T
(m) ⌦ Qm .

We follow stochastic evolution of initial state !0 according to ETH. It
turns out that if !0 is chosen as above then, after n = 1, 2, . . . time
steps, the formula for the state !n, applied to operators of the form
��n(F ⌦ C )�n 2 E�n, is given by

(In) !n

�
��n(F ⌦ C )�n

�
= h��n(k),F ��n(k)i · tr

�
⌦n · C

�
(20)

where ⌦n / orthogonal projection.
We now explain the induction step (In)) (In+1). We first consider the
restriction of !n to the algebra E�(n+1):

!n

�
��(n+1)(F ⌦ C )�n+1

| {z }
⌘X2E�(n+1)

�
= h��n+1(k),F ��n+1(k)i · tr

�b⌦n+1 · C
�
,



The Induction Step
where the density matrix b⌦n+1 is given by

b⌦n+1 =
X

`,m=1,...,M

g
m`(n)VQ` ⌦n QmV

⇤ , (21)

V unitary on hA , g
m`(n) := hT (m)�kn ,T

(`)�kni (22)

G (n) :=
�
g
m`(n)

�
is a non-negative matrix. Map ⌦n 7! b⌦n+1 given in

(21) is completely positive. ) b⌦n+1 is a density matrix. Spect. thm. )

b⌦n+1 =
LX

j=1

pj(n + 1)⇧j(n + 1), p1(n + 1) > · · · > pL(n + 1) > 0,

for some L  M, where the ⇧j(n + 1) are orthogonal projections, and

LX

j=1

pj(n + 1) tr
�
⇧j(n + 1)

�
= 1 .

According to the Collapse Postulate, Axiom CP, Nature chooses



The Weak-Coupling Regime

⌦n+1 :=
⇥
tr
�
⇧j⇤

�⇤�1
⇧j⇤(n + 1) , for some j⇤ , (23)

as the state of the atom at time n + 1, with
Probablity = pj⇤(n + 1)tr

�
⇧j⇤(n + 1)

�
(Born Rule)

This proves (In+1), thus completing the induction step.

The weak-coupling regime: T
(m) = 1+ " ⌧ (m), k⌧ (m)k  1,

for some positive "⌧ 1. Then

g
m`(n) = 1 +O("), 8 m, `.

Thus Eq. (21) implies

b⌦n+1 = V ⌦n V
⇤ +O(") ) ⌦n+1 = V ⌦n V

⇤ +O(") , (24)

with probability 1�O("), i.e., time evolution of states (in the
Schrödinger picture) is given, to a good approximation, by unitary

conjugation!

However, for purely entropic reasons, it happens with a frequency / "
that tr(⌦n+1 · V⌦nV

⇤) ⇠ 0. This is then perceived as an “Event” in the
literal sense of the word!



The Strong-Coupling Regime

The strong-coupling regime: Characterized by

g
m`(n) = hT (m) �kn ,T

(`) �kni = �m` +O("), 0 < "⌧ 1 , (25)

(at least for kn = 0!) Then, for large enough times, n,

b⌦n+1 =
MX

m=1

VQm ⌦nQmV
⇤ +O(") , (26)

hence ⌦n+1 = VQkV
⇤ +O("), for some k 2 {1, . . . ,M} (state

collapse!). If ⌦n = V Q`V
⇤ +O(") then the probability for ⌦n+1

to be given by ⌦n+1 = VQkV
⇤ +O(") is given by

P(k , `) := tr
���QkV Q`

��2� . (27)

Hence the evolution of states is well approximated by sample paths
of a classical Markov chain with transition function P(k , `)!



Alternation Between Unitary Evolution and State Collapse

It can happen that the matrices G (n) =
�
g
m`(n)

�
have the form

G (n) = G0 +O("), with

G0 =

0

BBBB@

1 . . . 1 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 0 . . . 1

1

CCCCA
(28)

where the upper left block is a K ⇥ K matrix and the lower right block is
the (M � K )⇥ (M � K ) identity matrix. Then unitary evolution prevails
on the subspace hw

A
of dimension K corresp. to the range of the proj.P

K

m=1 Qm, while on the complementary subspace hs
A
= hA  hw

A
state

collapse prevails. If the subsapces hw
A
and hs

A
are not invariant under V

then there are transitions frrom one regime to the other regime in the
course of the evolution of a state.

This leads to a succinct description of measurements and observations!



Summary and Conclusions ...

I The ETH-Approach to Quantum Mechanics provides a logically
coherent theory of Potential and Actual Events, of the recordings of
the latter, and of measurements. It has resemblences with “Many
Worlds,” “GRW,” ... ; yet, it supersedes these imprecise formalisms
and describes but One World! The models in Sect. 4 provide a
useful illustration of the ETH-Approach.

I As in the genesis of Special Relativity, fields describing massless

modes (photons & gravitons), besides the even-dimensionality of
space-time play key roles in the genesis of a Quantum Theory that
satisfies the spectrum condition (H � 0) and solves the “measure-
ment problem.” (Has not been properly appreciated, so far!)

I Actual Events weave the fabric of space-time! (“Emergent gravity”)

I Thanks to the Principle of Diminishing Potentialities (PDP) and the
natural presence of an “arrow of time” in the ETH-Approach to
Quantum Theory, the “Information –” and the “Unitarity Paradox”
appear to dissolve. ...

I thank you for your attention!


